

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level In Statistics S1 (WST01) Paper 01 Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Edexcel and BTEC Qualifications

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023 Question Paper Log Number 72904 Publications Code WST01_01_2306_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if **the candidate's response** is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75.

Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.

- To earn the M mark, the equation
- (i) should have the correct number of terms
- (ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

'M' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. MO A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).

A and B marks may be f.t. – follow through – marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
 - the symbol $\sqrt{}$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working

- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft

to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Qu	Scheme	Marks
1 (a)	eg 60 people = 1.5 large squares/6 medium squares/150 small squares or	
	eg 1 person = 0.025 large squares/0.6 medium squares/2.5 small squares or	
	eg [1 small square =] 0.4 people/[1 medium square =] 10 people/[1 large square =] 40 people	B1
	eg a correct f.d. eg $\frac{60}{(20-10)} = 6$]	
	eg a correct frequency, 100, 70, 20, 24 associated with the appropriate bar	
	eg $\frac{8}{10} \times 20$ or $\frac{15}{30} \times 24$ or 8×2 or 0.8×15 or $\frac{40}{2.5}$ or $\frac{30}{2.5}$ or $8 \times 5 \times 0.4$	M1
	$2 \times 15 \times 0.4$ or 16 or 12 or 70×0.4	4.1
	28 people	AI (3)
(b)	Median = $[5] + \frac{5}{70} \times 37 \text{ or } [10] - \frac{5}{70} \times 33$	M1
	= 7.642 awrt 7.64	A1
		(2)
(C)	$\sum \text{midpoint} \times \text{freq} = 2.5 \times 100 + 7.5 \times 70 + 15 \times 60 + 25 \times 20 + 45 \times 24 [= 3255]$	M1
	Mean = $\frac{"3255"}{274}$	dM1
	= 11.879 awrt 11.9	A1
		(3)
(a)	Notes	Total 8
	 D1. for mining a ratio octive in people and area. Anow just the numbers for 1 person of 10 1 square le 0.025, 0.6, 2.5, 0.4, 1.66 or 40 or calculating f.d. for any bar correctly, fd = 20, 14, 6, 2 or 0.8 Information may be seen on diagram. Must be clear it is a fd either by correct use, seen on axes associated with correct bar or stated as an fd. May be implied by M1 M1: for a correct method to find the number of people between 22 and 30 km or 30 and 45 km or between 22 and 45 km 	
	A1:28	
(b)	M1: Allow equivalent for $n + \frac{5}{70} \times 37$ or $\frac{Q_2 - n}{5} = \frac{137 - 100}{170 - 100}$ or $n - \frac{33}{70} \times 5$ or $\frac{n - Q_2}{5} = \frac{170 - 137}{170 - 100}$ oe Allow alternative methods eg $\frac{Q_2 - 5}{10 - Q_2} = \frac{137 - 170}{170 - 137}$	
	Allow 37.5 tor 37, 137.5 tor 137, 32.5 tor 33	
	A1: awrt 7.64 or $\frac{107}{14}$ or allow awrt 7.68 or $\frac{215}{28}$ if using $n + 1$ Allow awrt 7640 m or 7680 m b	out must
വി	nave units. M1: Attempt at correct every for $\sum midpoint + frequent 2 and beta with a second second$	desints
	M1: Attempt at correct expression for \sum midpoint × ireq - at least 3 products with correct midpoint × ire	apoints
	added with at least 1 of these products fully correct. Allow for 3255	
	3255	
	A1: awrt 11.9 or $\frac{3233}{274}$	
	Allow awrt 11900 m but must have units	

Qu	Scheme	Marks
2(a)	$S_{nw} = 2304.53 - \frac{297.8 \times 114.8}{15}$ or $S_{ww} = 6089.12 - \frac{297.8^2}{15}$	M1
	S _{tw} = 25.367 awrt 25.4	A1
	S _{ww} = 176.797 awrt 177	A1
		(3)
(b)	$r = \frac{"25.367"}{\sqrt{5.3173 \times "176.797"}}$	M1
	= 0.82735 awrt 0.827 or 0.828	A1
		(2)
(c)	$b = \frac{"25.367"}{5.3173} [= 4.77065]$	M1
	$a = \frac{297.8}{15} - \frac{"25.367"}{52172} \times \frac{114.8}{15} [= -16.658]$	M1
	$\frac{15}{15} = 5.3173 = 15$	A 1*aga
	b = 4.771 or better of $a = -10.00$ or better seen and $w = -10.7 + 4.771$	(3)
(d)	[On average,] for each cm/1 cm of tail length/t the weight/w increases by 4.77 g/grams	B1
		(1)
(e)	$w = -16.7 + 4.77 \times 2[= -7.16]$ or $4.77 \times 2[= 9.54]$ or $[t =]\frac{16.7}{4.77}[= 3.5]$ or sd = awrt 0.6	M1
	[w =] - 7.16 or $9.54 < 16.7$ or $2 < 3.5$ which is negative/weight cannot be negative	A 1
	or for sd extrapolation since a 2 cm tail is (approx 9 sd)/(more than 3 sd) from the mean	AI
		(2)
(f)	0.827	Blft
(g)	2y+10 = -16.7 + 4.77(x+6) oe	B1ft
		(1)
(9)	Notes	Total 13
(a)	Millifor a correct expression for S_{tw} or S_{ww}	
	A1 awrt 25.4	
(b)	M1 for a valid attempt at r with their S not equal to 2304 53 and S not equal to 6089 12	
	A1 (M2 on enen) awrt 0 827 or awrt 0 828	
(c)	1 st M1 for a correct method to find the value of <i>b</i>	
	2 nd M1 ft their <i>b</i> . For a correct method to find <i>a</i> . Minimum shown	
	$a = awrt 19.9 - "their b" \times awrt 7.65 [= -16.658]$	
	A1* Both method marks must be awarded, equation stated (no fractions) and sight of (4.771 or (-16.66 or better)	or better)
(d)	B1 For a suitable contextual comment that implies that as length increases by 1 cm weight inc 4.77g. Allow multiples eg each 10 cm increase in tail length weight increases by 47.7g Allow	preases by in terms
(e)	M1 for a correct method to calculate the value of w (condone if written as a fraction) or	
	4.77 × 2[= 9.54] or correct method to find tail length when $w = 0$ or sd = awrt 0.6	
	A1 Method mark must be awarded. For -7.16 or $9.54 < 16.7$ or $2 < 3.5$ with a relevant explanation of the product of the p	ation
	stating that weight is negative. If $sd = awrt 0.6$ is given allow extrapolation since a 2 cm tail is $9 sd)/(more than 3 sd)$ from the mean	s (approx
(f)	B1ft follow through their answer to (b)	
(g)	B1 ISW no need to be simplified. Allow equivalent eg $y = \frac{-16.7 + 4.77(x+6)}{2} - 5$ The correct	t
1	γ	

Qu	S	scheme	Marks
3 (a)	$\left[\overline{x} = \right] \frac{3711}{81} \left[= 45.814 \right]$	$\left[\sum l = \right] 3711 + 81 \times 600 \left[= 52311\right]$	M1
	$\left[\overline{l}\right]$ "45.814"+600	$\left[\overline{l}\right] = \frac{"52311"}{81}$	M1
	$\left[\overline{l}=\right]645.81$	awrt 646	A1
			(3)
(b)	$\left[\sigma_{x}^{2}=\right]\frac{475181}{81}-\left(\frac{3711}{81}\right)^{2}\left[=3767\right]$	$\left[\operatorname{Var}(L) = \right] \frac{34088381}{81} - \left(\frac{"52311"}{81}\right)^2$	M1
	$= 3767.43 \Rightarrow \boldsymbol{\sigma}_{l}^{2} = 3767.43$	= 3767.43 awrt 3770	A1
	40		(2)
(0)	40		(1)
(d)	IQR = 5400 - 3800 [= 1600]		M1
	5400+1.5×"1600" [= 7800] or 3800-1.5×"1600" [= 1400]		M1
	7800 > 7700 and 1400 < 1600 therefore t	here are no outliers	A1
			(3)
		Notes	Total 9
(a)	M1 for a correct method to find \overline{x} or \sum	<i>l</i> Allow 45.8 or better. Ignore labels	
	M1 for a correct method to find \overline{l} ft their \overline{x} if it is clearly labelled or it comes from $\frac{3711}{81}$ or ft		
	their $\sum l$ if it is clearly labelled or comes from $3711+81\times600$		
	A1 awrt 646 or $\frac{17437}{27}$ or $\frac{52311}{81}$ oe		
(b)	M1 correct method to find Var (X) implies	ed by awrt 3770 or a correct method to find Var	(L) ft their
	$\sum l$ or Allow calculation of sd $[\sigma_x]$ = awrt 61.4 Ignore labels		
	A1 awrt 3770 labelled clearly as $Var(L)$ of	or Var $(L) = Var(X)$ or $\sigma_l = \sigma_x$ stated or variance	is not
	changed by coding is stated or they have gained the answer from $\frac{34088381}{81} - \left(\frac{"52311"}{81}\right)^2$		
(c)	B1 cao	1. 11	
(d)	M1 correct method to find IQR. May be implied by a correct limit. NB $1.5 \times (5400 - 3800) = 2400$		
	M1 for a correct method to find the upper or the lower outlier boundary.		
	A1 both 7800 and 1400 correct and 7700 and 1600 (as the minimum not IQR) seen and explicitly		explicitly
	stating no outliers		

Qu	Scheme	Marks	
4(a)	Bag Colour		
	0.02 Red		
	A		
	0.2 Not Red		
	0.5 0.98 Horizod		
	0.45 0.04 Red	B1B1	
		DIDI	
	0.96 Not Red		
	0.25		
	0.06 Red		
	C 0.06 Red		
	Not Red		
	0.94		
		(2)	
(b)	0.3×"0.98"	M1	
	= 0.294	AI (2)	
(c)	$(0.3 \times 0.02) + ("0.45" \times "0.04") + ("0.25" \times "0.06")$	(2) M1	
(0)	$(0.3 \times 0.02) + (0.43 \times 0.04) + (0.23 \times 0.06)$	MI	
	= 0.039	AI (2)	
(d)		(2)	
(u)	$P(C Red) = \frac{0.25 \times 0.00}{1000000000000000000000000000000000$	M1,M1	
	<u> </u>		
	$= 0.3846 \text{ or } \frac{5}{12}$		
	13		
	Notos	(3) Total Q	
(a)	B1 for 0.45, 0.25 and 0.98 Allow fractions	10101 9	
(4)	B1 0.04 0.96 and 0.06 0.94 Allow fractions		
(b)	M1 may ft their tree diagram if method shown $0.3 \times$ " their 0.98"		
	A1 0.294 oe		
(c)	M1 may ft their tree diagram if method shown		
	A1 0.039 oe		
(d)	M1 allow $p_{n-1} = p_{n-1}$ or p_{n-1} where $0 \le n \le 1$ and $n \le denominator and their$	(c) is a	
	"their part (c)" 0.039 "their part (c)" 0.039	(0) 15 u	
	probability or		
	allow $\frac{0.25 \times 0.06}{0.25 \times 0.06}$ or $\frac{0.015}{0.015}$ where $0 \le a \le 1$ and $a \ge numerator$		
	q q q q q q q q q q		
	1.1. "0.25"×"0.06" 0.1 · · · · · · · · · · · · · · · · · · ·		
	M1 for $\frac{1}{0.039"}$ ft their tree diagram and their part(c) if all 3 figures shown in		
	working. We will condone num > denom		
	A1 awrt 0.385		
	NB if correct ft on numerator and denominator leads to "num" > "denom" then max score		
	is M0M1A0		

Qu	Scheme	Marks
5(a)	$P(Y=y) \qquad 2k \qquad k \qquad k \qquad 8k \qquad 17k \qquad k$	M1
	$2k + k + k + 8k + 17k + k = 1$ or $30k = 1$ $\left[\Longrightarrow k = \frac{1}{30} \right]^*$	A1*
		(2)
(b)	k + k + 8k or $1 - (2k + 17k + k)$	M1
	$=\frac{1}{3}$ oe awrt 0.333	A1
		(2)
(c)	$(1 \times 2k) + (2 \times k) + (3 \times k) + (4 \times 8k) + (5 \times 17k) + (6 \times k) =$	M1
	$\frac{13}{3}$ oe awrt 4.33	A1
		(2)
(d)	$P(Y \ge 15 - 2Y)$ or $[X =]$ 13 11 9 7 5 3 only or $[Y =]$ 5 or 6 only	M1
	$[P(Y \ge 5) = P(Y = 5) + P(Y = 6)] = \frac{"17"}{30} + \frac{"1"}{30}$	M1
	$= \frac{3}{5}$ oe	A1ft
(e)	$\operatorname{Var}(X) = 4\operatorname{Var}(Y)$	(3) M1
(-)	$[E(Y^2) =](1 \times 2k) + (2^2 \times k) + (3^2 \times k) + (4^2 \times 8k) + (5^2 \times 17k) + (6^2 \times k) = \frac{302}{15} \text{ or awrt } 20.1$	M1
	$\left[\operatorname{Var}(Y) = \right]'' \frac{302}{15}'' - \left(''\frac{13}{3}''\right)^2 \left[= \frac{61}{45} \text{ or awrt } 1.36 \right]$	M1d
	$\left[\text{Var}(X) = \right] \frac{244}{45}$ oe awrt 5.42	A1
	ALT for 1 st 3 marks	(4)
	$[E(X) =] (13 \times 2k) + (11 \times k) + (9 \times k) + (7 \times 8k) + (5 \times 17k) + (3 \times k) \left[= \frac{19}{3} \text{ or awrt } 6.33 \right]$	M1
	$[E(X^{2}) =](13^{2} \times 2k) + (11^{2} \times k) + (9^{2} \times k) + (7^{2} \times 8k) + (5^{2} \times 17k) + (3^{2} \times k) \left[= \frac{683}{15} \text{ or awrt } 45.5 \right]$	M1
	$\left[\operatorname{Var}(X) = \right]'' \frac{683}{15}'' - \left('' \frac{190}{30}''\right)^2$	M1d
(-)	Notes	Total 13
(a)	or in the calculation (but do not need to be simplified)	n a table
	A1* Method mark must be awarded. For a correct equation which would lead to $k = 1/30$ *	
	NB Verification - $2\left(\frac{1}{30}\right) + \left(\frac{1}{30}\right) + 8\left(\frac{1}{30}\right) + 17\left(\frac{1}{30}\right) + \left(\frac{1}{30}\right) = 1$ gains M1 A0	
(b)	M1 for using $P(Y = 2) + P(Y = 3) + P(Y = 4)$ or $1 - P(Y = 1) + P(Y = 5) + P(Y = 6)$ Allow in terms	s of <i>k</i> or
	with $k = 1/30$ subst or with their probabilities. Do not allow in terms of y	
	A1 awrt 0.333	
(c)	M1 for using $\sum x P(x)$ At least 3 terms given Allow with $k = 1/30$ subst or ft their probabilities	5.
(4)	A1 awrt 4.33	
(u)	M1 forming correct medianty in <i>T</i> of 13,11,9,7,3,5 seen anywhere of for 5 and 6 only. Implied M1 finding their $P(Y = 5)$ + their $P(Y = 6)$ or $P(X = 5) + P(X = 3)$ eg $17k + k$	by 2 IVII
	Alft ft their probabilities	
(e)	M1 written or used $4Var(Y)$ (may come at the end of the calculation) or written or used $E(X)$ allow awrt	
	6.33 NB condone -2^2 Var(<i>Y</i>) if used 4Var(<i>Y</i>)	
	M1 Correct method, at least 3 products correct, to find $E(Y^2)$ or $E(X^2)$ condone incorrect labe	ls
	M1d dep on the 2 nd M mark being awarded. For correct use of $E(Y^2) - [E(Y)]^2$ or $E(X^2) - [E(X)]^2$ For	
L	the ALT In addition to the 2 nd M1 the 1 st M1 must be awarded. Condone incorrect labelling	
	A1 awrt 5.42	

Qu	Scheme	Marks	
6(a)	0.6	B1	
		(1)	
(b)	$\left[P(A \cap B) = \right] 0.1 \times 0.3 \text{ or } 0.3 = \frac{P(A \cap B)}{0.1}$	M1	
	$0.25 = 0.1 + P(B) - "0.03"$ or $0.25 = 0.1 + P(B) - P(A \cap B)$	M1	
	P(R) = 0.15		
	$0.25 = 0.1 + P(B) - 0.03 \text{ or } 0.3 = \frac{P(B) - 0.13}{0.1} \therefore P(B) = 0.18*$	A1*	
(-)		(3)	
	$\begin{bmatrix} A & B & C \\ 0.07 & 0.03 & 0.09 & 0.41 \\ 0.07 & 0.03 & 0.09 & 0.41 \\ 0.34 \end{bmatrix}$	M1 M1 B1ft B1ft A1	
		(5)	
	Notes	Total 9	
(a) (b)	$\mathbf{P}(\mathbf{t} = \mathbf{p})$		
(D)	M1 for use of $P(B A) = \frac{P(A \cap B)}{P(A)}$ with 0.1 and 0.3 substituted. Allow for 0.1×0.3 seen		
	M1 $0.25 = 0.1 + P(B) - p$ where $0 or p = P(A \cap B) or eg(0.25 - 0.1 + p = P(B)) (allow$		
	any letter for $P(B)$ A 1* $P(B) = 0.18$ denote both analysis M and by find the full sector in the form		
	A1* $P(B) = 0.18$ depends on both previous M marks for a fully correct equation in terms of $P(B)$ (allow any letter for $P(B)$) followed by $P(B) = 0.18$		
	NB 0.03 used/stated with no working could get M0M1A0		
	Using $P(A \cap B) = 0.1 \times P(B)$ then they get M0M0A0		
	Verification could get M1M1A0		
	M1 for 0.1×0.3		
	M1 for $0.25 - 0.18 - 0.1 = -0.03$ or $0.3 = \frac{0.18 - 0.15}{0.1}$ or $0.25 = 0.1 + 0.18 - P(A \cap B)$		
(c)	M1 for 3 circles as per either diagram. If using Diagram 2 we must see exactly 2 zeros in c	one of the	
	intersections (as shaded). (Do Not accept blank or dash instead of 0) Condone missing rectangle.		
	Ignore labels		
	left or right hand circles in 1 st diagram or must have zeros (condone blank or dash) in the 2	other	
	regions of the circle if in 2^{nd} diagram		
	B1ft their "0.03" in correct place on diagram. Correct label required		
	B1ft for 0.34 or ft 0.75 – "their 0.41" where their 0.41 \neq 0.5 No other ft accepted. Do not allow 0.75		
	A1 fully correct Venn diagram including the rectangle and all 3 labels.		
	At fully conteet vehil diagram menduing the rectangle and an 5 fabers.		
	SC no labels could get M1M1B0B1A0 if using 3 intersecting circles must have blanks or () for the	

Qu	Scheme	Marks	
7(a)(i)	$P(J > 510) = P(Z > \frac{510 - 500}{25}) \text{ or } P(Z > 0.4)$	M1	
	$= 1 - 0.6554 \implies 0.3446 *$	A1*	
		(2)	
(ii)	$\frac{d-500}{25} = -1.4 (\text{calc} - 1.3997)$	M1B1	
	d = 465 (calc 465.007)	dA1	
		(3)	
(b)	$(1-0.3446)^5$	M1	
	= 0.1209 awrt 0.121	Al	
		(2)	
(c)	$\frac{r-520}{k} = -1.0364$	M1A1	
	$\frac{3r - 800 - 520}{k} = 2.5758$	M1A1	
	$-240 = (3 \times -"1.0364k") - "2.5758"k \text{ or } \frac{r - 520}{"-1.0364"} = \frac{3r - 1320}{"2.5758"} \text{ oe}$	ddM1	
	<i>k</i> = 42.216 awrt 42	A1	
	r = 476.246 awrt 476	dA1	
	Natas	(7)	
(a)(i)	Notes M1 for standardising using 500 and 25 Allow for 0.4	10tal 14	
(4)(1)	A1* M1 must be awarded. For $1 - 0.6554 = 0.3446$ or using calc $0.34457 = 0.3446$ or bet	tter	
(ii)	M1 correct standardisation using 500 and 25 equated to a z value where $1 < z < 2$		
	B1 correct expression with compatible signs eg $\frac{500-d}{25} = 1.4$ (calc 1.3997) or allow incompatible		
	signs with 500 – ("535"–500)		
	SC $\frac{510-d}{25} = 1.4$ (calc 1.3997) can get M0B1A0		
	dA1 dependent on M1 awarded for 465 or 465.007		
(b)	M1 for $(p)^5$ where 0		
	A1 awrt 0.121		
(c)	M1 $\frac{r-520}{k} = z$ value where $ z > 1$		
	$1^{\text{st}} \text{A1} \frac{r-520}{k} = \text{awrt} -1.0364 \text{ (calc } 1.036433) \text{ (signs must be compatible)}$		
	$2^{nd} M1 \frac{3r - 800 - 520}{k} = z$ value where $ z > 2$		
	$2^{nd} A1 \frac{3r - 800 - 520}{k} = awrt 2.5758 (calc 2.5758293) (signs must be compatible)$		
	$^{\text{x}}$ 3 rd M1 (dep on both Ms) for forming a correct equation in k or r only using their z values . ISW once $3(-1.0364k + 520) = 800 = 520$		
	correct equation seen eg $-5.685k = -240$ or $\frac{k}{k} = 2.5758$ Implie	ed by r	
	$3^{rd}A1$ for awrt 42		
	4 th A1 for awrt 476 Must come from equations with compatible signs		
	NB awrt 476 and awrt 42 does not mean full marks. They could get M1A0M1A0 M1A1A1	if they do	
	not have accurate z values	-	